Cargando…

Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats

BACKGROUND: Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, ser...

Descripción completa

Detalles Bibliográficos
Autores principales: Bei, Fei, Jia, Jia, Jia, Yi-Qun, Sun, Jian-Hua, Liang, Fei, Yu, Zhong-Yi, Cai, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549095/
https://www.ncbi.nlm.nih.gov/pubmed/26302954
http://dx.doi.org/10.1186/s12944-015-0094-2
_version_ 1782387268609114112
author Bei, Fei
Jia, Jia
Jia, Yi-Qun
Sun, Jian-Hua
Liang, Fei
Yu, Zhong-Yi
Cai, Wei
author_facet Bei, Fei
Jia, Jia
Jia, Yi-Qun
Sun, Jian-Hua
Liang, Fei
Yu, Zhong-Yi
Cai, Wei
author_sort Bei, Fei
collection PubMed
description BACKGROUND: Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, serum biochemistry and serum fatty acid metabolomics in male rats. METHODS: Rats raised in small litters (SL, 3 pups/dam) and normal litters (NL, 10 pups/dam) were used to model early postnatal overnutrition and control, respectively. Serum glucose, triglyceride, high-density lipoprotein-cholesterol, free fatty acid, insulin and leptin concentrations were assayed using standard biochemical techniques. Serum fatty acids were identified and quantified using a gas chromatography–mass spectrometry-based metabolomic approach. mRNA and protein levels of key components of the insulin receptor signaling pathway were measured in epididymal fat and gastrocnemius muscle by quantitative PCR and western blotting. RESULTS: SL rats were 37.3 % and 15.1 % heavier than NL rats at weaning and 16-weeks-old, respectively. They had increased visceral fat mass, adult-onset insulin resistance and glucose intolerance as well as elevated serum levels of free fatty acids and triglycerides. All detectable fatty acids were elevated in the serum of SL pups at weaning compared to NL controls, and significant increases in the levels of four fatty acids (palmitic acid, palmitoleic acid, oleic acid and arachidonic acid) persisted into adulthood. Moreover, a significantly positive correlation was identified between an insulin resistance index (HOMA-IR) and concentrations of myristic, palmitic, palmitoleic and oleic acid in serum at postnatal 16 weeks. Early postnatal overnutrition also resulted in a significant downregulation of insulin receptor substrate-1 (Irs-1), protein kinase B (Akt2) and glucose transporter 4 (Glut4) at the protein level in epididymal fat of SL rats at 16 weeks, accompanied by decreased mRNA levels for Irs-1 and Glut4. In gastrocnemius muscle, Akt2 and Glut4 mRNA and Glut4 protein levels were significantly decreased in SL rats. CONCLUSIONS: This study demonstrates that early postnatal overnutrition can have long-lasting effects on body weight and serum fatty acid profiles and can lead to impaired insulin signaling pathway in visceral white adipose tissue and skeletal muscle, which may play a major role in IR.
format Online
Article
Text
id pubmed-4549095
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45490952015-08-26 Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats Bei, Fei Jia, Jia Jia, Yi-Qun Sun, Jian-Hua Liang, Fei Yu, Zhong-Yi Cai, Wei Lipids Health Dis Research BACKGROUND: Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, serum biochemistry and serum fatty acid metabolomics in male rats. METHODS: Rats raised in small litters (SL, 3 pups/dam) and normal litters (NL, 10 pups/dam) were used to model early postnatal overnutrition and control, respectively. Serum glucose, triglyceride, high-density lipoprotein-cholesterol, free fatty acid, insulin and leptin concentrations were assayed using standard biochemical techniques. Serum fatty acids were identified and quantified using a gas chromatography–mass spectrometry-based metabolomic approach. mRNA and protein levels of key components of the insulin receptor signaling pathway were measured in epididymal fat and gastrocnemius muscle by quantitative PCR and western blotting. RESULTS: SL rats were 37.3 % and 15.1 % heavier than NL rats at weaning and 16-weeks-old, respectively. They had increased visceral fat mass, adult-onset insulin resistance and glucose intolerance as well as elevated serum levels of free fatty acids and triglycerides. All detectable fatty acids were elevated in the serum of SL pups at weaning compared to NL controls, and significant increases in the levels of four fatty acids (palmitic acid, palmitoleic acid, oleic acid and arachidonic acid) persisted into adulthood. Moreover, a significantly positive correlation was identified between an insulin resistance index (HOMA-IR) and concentrations of myristic, palmitic, palmitoleic and oleic acid in serum at postnatal 16 weeks. Early postnatal overnutrition also resulted in a significant downregulation of insulin receptor substrate-1 (Irs-1), protein kinase B (Akt2) and glucose transporter 4 (Glut4) at the protein level in epididymal fat of SL rats at 16 weeks, accompanied by decreased mRNA levels for Irs-1 and Glut4. In gastrocnemius muscle, Akt2 and Glut4 mRNA and Glut4 protein levels were significantly decreased in SL rats. CONCLUSIONS: This study demonstrates that early postnatal overnutrition can have long-lasting effects on body weight and serum fatty acid profiles and can lead to impaired insulin signaling pathway in visceral white adipose tissue and skeletal muscle, which may play a major role in IR. BioMed Central 2015-08-26 /pmc/articles/PMC4549095/ /pubmed/26302954 http://dx.doi.org/10.1186/s12944-015-0094-2 Text en © Bei et al. 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Bei, Fei
Jia, Jia
Jia, Yi-Qun
Sun, Jian-Hua
Liang, Fei
Yu, Zhong-Yi
Cai, Wei
Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title_full Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title_fullStr Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title_full_unstemmed Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title_short Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
title_sort long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549095/
https://www.ncbi.nlm.nih.gov/pubmed/26302954
http://dx.doi.org/10.1186/s12944-015-0094-2
work_keys_str_mv AT beifei longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT jiajia longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT jiayiqun longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT sunjianhua longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT liangfei longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT yuzhongyi longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats
AT caiwei longtermeffectofearlypostnatalovernutritiononinsulinresistanceandserumfattyacidprofilesinmalerats