Cargando…

Plasma ADMA associates with all-cause mortality in renal transplant recipients

Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before...

Descripción completa

Detalles Bibliográficos
Autores principales: Frenay, Anne-Roos S., van den Berg, Else, de Borst, Martin H., Beckmann, Bibiana, Tsikas, Dimitrios, Feelisch, Martin, Navis, Gerjan, Bakker, Stephan J. L., van Goor, Harry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549386/
https://www.ncbi.nlm.nih.gov/pubmed/26077715
http://dx.doi.org/10.1007/s00726-015-2023-0
Descripción
Sumario:Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before and after kidney transplantation, renal transplant recipients (RTR) are at high risk for the alleged deleterious effects of ADMA. We investigated the associations of ADMA levels with all-cause mortality and graft failure in RTR. Plasma ADMA levels were determined in 686 stable outpatient RTR (57 % male, 53 ± 13 years), with a functioning graft for ≥1 year. Determinants of ADMA were evaluated with multivariate linear regression models. Associations between ADMA and mortality were assessed using multivariable Cox regression analyses. The strongest associations with plasma ADMA in the multivariable analyses were male gender, donor age, parathyroid hormone, NT-pro-BNP and use of calcium supplements. During a median follow-up of 3.1 [2.7–3.9] years, 79 (12 %) patients died and 45 (7 %) patients developed graft failure. ADMA was associated with increased all-cause mortality [HR 1.52 (95 % CI 1.26–1.83] per SD increase, P < 0.001], whereby associations remained upon adjustment for confounders. ADMA was associated with graft failure [HR 1.41 (1.08–1.83) per SD increase, P = 0.01]; however, upon addition of eGFR significance was lost. High levels of plasma ADMA are associated with increased mortality in RTR. Our findings connect disturbed NO metabolism with patient survival after kidney transplantation.