Cargando…
Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text] . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Stat...
Autores principales: | Hastie, David I., Liverani, Silvia, Richardson, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550296/ https://www.ncbi.nlm.nih.gov/pubmed/26321800 http://dx.doi.org/10.1007/s11222-014-9471-3 |
Ejemplares similares
-
Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics
por: Holmes, Ian, et al.
Publicado: (2012) -
Kernel Analysis Based on Dirichlet Processes Mixture Models
por: Tian, Jinkai, et al.
Publicado: (2019) -
Clustering compositional data using Dirichlet mixture model
por: Pal, Samyajoy, et al.
Publicado: (2022) -
From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering
por: Frühwirth-Schnatter, Sylvia, et al.
Publicado: (2018) -
Local Bayesian Dirichlet mixing of imperfect models
por: Kejzlar, Vojtech, et al.
Publicado: (2023)