Cargando…
Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales
Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinog...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550343/ https://www.ncbi.nlm.nih.gov/pubmed/26309130 http://dx.doi.org/10.1371/journal.pone.0135655 |
_version_ | 1782387440859742208 |
---|---|
author | Heavner, Mary Ellen Qiu, Wei-Gang Cheng, Hai-Ping |
author_facet | Heavner, Mary Ellen Qiu, Wei-Gang Cheng, Hai-Ping |
author_sort | Heavner, Mary Ellen |
collection | PubMed |
description | Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order’s close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species. |
format | Online Article Text |
id | pubmed-4550343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45503432015-09-01 Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales Heavner, Mary Ellen Qiu, Wei-Gang Cheng, Hai-Ping PLoS One Research Article Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order’s close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species. Public Library of Science 2015-08-26 /pmc/articles/PMC4550343/ /pubmed/26309130 http://dx.doi.org/10.1371/journal.pone.0135655 Text en © 2015 Heavner et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Heavner, Mary Ellen Qiu, Wei-Gang Cheng, Hai-Ping Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title | Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title_full | Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title_fullStr | Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title_full_unstemmed | Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title_short | Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales |
title_sort | phylogenetic co-occurrence of exor, exos, and chvi, components of the rsi bacterial invasion switch, suggests a key adaptive mechanism regulating the transition between free-living and host-invading phases in rhizobiales |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550343/ https://www.ncbi.nlm.nih.gov/pubmed/26309130 http://dx.doi.org/10.1371/journal.pone.0135655 |
work_keys_str_mv | AT heavnermaryellen phylogeneticcooccurrenceofexorexosandchvicomponentsofthersibacterialinvasionswitchsuggestsakeyadaptivemechanismregulatingthetransitionbetweenfreelivingandhostinvadingphasesinrhizobiales AT qiuweigang phylogeneticcooccurrenceofexorexosandchvicomponentsofthersibacterialinvasionswitchsuggestsakeyadaptivemechanismregulatingthetransitionbetweenfreelivingandhostinvadingphasesinrhizobiales AT chenghaiping phylogeneticcooccurrenceofexorexosandchvicomponentsofthersibacterialinvasionswitchsuggestsakeyadaptivemechanismregulatingthetransitionbetweenfreelivingandhostinvadingphasesinrhizobiales |