Cargando…
A reinforcement learning approach to gait training improves retention
Many gait training programs are based on supervised learning principles: an individual is guided towards a desired gait pattern with directional error feedback. While this results in rapid adaptation, improvements quickly disappear. This study tested the hypothesis that a reinforcement learning appr...
Autores principales: | Hasson, Christopher J., Manczurowsky, Julia, Yen, Sheng-Che |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550775/ https://www.ncbi.nlm.nih.gov/pubmed/26379524 http://dx.doi.org/10.3389/fnhum.2015.00459 |
Ejemplares similares
-
Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm
por: Hasson, Christopher J, et al.
Publicado: (2015) -
Neurorehabilitation robotics: how much control should therapists have?
por: Hasson, Christopher J., et al.
Publicado: (2023) -
Visual programming for accessible interactive musculoskeletal models
por: Manczurowsky, Julia, et al.
Publicado: (2022) -
A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study
por: Anderson, Sarah J., et al.
Publicado: (2018) -
Recurrence Quantification Analysis of Ankle Kinematics During Gait in Individuals With Chronic Ankle Instability
por: Yen, Sheng-Che, et al.
Publicado: (2022)