Cargando…

Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy

By simultaneous coherent anti-Stokes Raman scattering (CARS) and 2-photon fluorescence microscopy of Thioflavin-S stained Alzheimer´s diseased human brain tissues, we show evidence of lipid deposits co-localizing with fibrillar β-amyloid (Aβ) plaques. Two lipid morphologies can be observed; lamellar...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiskis, Juris, Fink, Helen, Nyberg, Lena, Thyr, Jacob, Li, Jia-Yi, Enejder, Annika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550829/
https://www.ncbi.nlm.nih.gov/pubmed/26311128
http://dx.doi.org/10.1038/srep13489
Descripción
Sumario:By simultaneous coherent anti-Stokes Raman scattering (CARS) and 2-photon fluorescence microscopy of Thioflavin-S stained Alzheimer´s diseased human brain tissues, we show evidence of lipid deposits co-localizing with fibrillar β-amyloid (Aβ) plaques. Two lipid morphologies can be observed; lamellar structures and coalescing macro-aggregates of sub-micron sizes to ~25 μm. No significant lipid deposits were observed in non-fibrillar, diffuse plaques identified by Aβ immuno-staining. CARS microscopy of unlabeled samples confirms the lamellar and macro-aggregate lipid morphologies. The composition of the plaques was analyzed by CARS microspectroscopy and Raman microscopy; vibrational signatures of lipids with long acyl chains co-localize with the β-sheet vibrations. The lipid fluidity was evaluated from the CARS spectra, illustrating that the lipid composition/organization varies throughout the plaques. Altogether this indicates close amyloid-lipid interplay in fibrillar Aβ plaques, rendering them more dynamic compositions than previously believed and, hence, potential sources of toxic oligomers.