Cargando…

Findings and Recommendations From the Joint NIST—AGA Workshop on Odor Masking

Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection an...

Descripción completa

Detalles Bibliográficos
Autores principales: Rawson, Nancy, Quraishi, Ali, Bruno, Thomas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551224/
https://www.ncbi.nlm.nih.gov/pubmed/26989604
http://dx.doi.org/10.6028/jres.116.026
Descripción
Sumario:Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection and hazard avoidance. The detailed explanation of why individual chemicals (called odorants) might have a particular smell is still elusive. The situation with mixtures of odorants is even more complex and interesting. A number of distinct odorant mixture phenomena have been documented. Odorant suppression (sometimes called masking), conjugation (as described first by Zwaadermaker) and cross-adaptation are among a collection of such phenomena. They are related to the differential effects that one odorant species will have when mixed with another. Masking is a term that describes situations in which one odorant can overpower the sensation of another. There may be profound technological implications in a number of industrial sectors, most prominently in the fuel gas sector. Here, masking is suspected when the odorant that is added to natural gas can be detected by analytical instrumentation, but cannot be properly detected by an observer with a normal sense of smell. Note that this phenomenon is distinct from odor fade, which more properly describes a decrease in the concentration of an odorant rather than a decrease, disappearance or qualitative change in the perception of the odor in the absence of a change in absolute concentration. Anecdotal descriptions of masking events in the natural gas industry have persisted for over a decade, with the frequency of such events on the rise. Pursuant to the philosophy that the technological problem cannot be addressed until the basic science is understood, NIST, in collaboration with the American Gas Association (AGA), sponsored a workshop that brought together olfactory scientists and natural gas operations personnel in an effort to achieve a common understanding and identify critical research questions. This document is a summary of that workshop, and most importantly, a compendium of the findings and recommendations that resulted from the meeting.