Cargando…
Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2)
To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P (curve) of minimizing [Formula: see text] for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length...
Autores principales: | Duits, R., Boscain, U., Rossi, F., Sachkov, Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551278/ https://www.ncbi.nlm.nih.gov/pubmed/26321794 http://dx.doi.org/10.1007/s10851-013-0475-y |
Ejemplares similares
-
Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in [Formula: see text]
por: Mashtakov, A., et al.
Publicado: (2017) -
Riemannian manifolds and homogeneous geodesics
por: Berestovskii, Valerii, et al.
Publicado: (2020) -
A comprehensive introduction to sub-Riemannian geometry
por: Agrachev, Andrei, et al.
Publicado: (2019) -
Geometric control theory and sub-Riemannian geometry
por: Stefani, Gianna, et al.
Publicado: (2014) -
Two classes of Riemannian manifolds whose geodesic flows are integrable
por: Kiyohara, Kazuyoshi
Publicado: (1998)