Cargando…
Quantitative gene set analysis generalized for repeated measures, confounder adjustment, and continuous covariates
BACKGROUND: Gene set analysis (GSA) of gene expression data can be highly powerful when the biological signal is weak compared to other sources of variability in the data. However, many gene set analysis approaches utilize permutation tests which are not appropriate for complex study designs. For ex...
Autores principales: | Turner, Jacob A., Bolen, Christopher R., Blankenship, Derek M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551517/ https://www.ncbi.nlm.nih.gov/pubmed/26316107 http://dx.doi.org/10.1186/s12859-015-0707-9 |
Ejemplares similares
-
A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation
por: Kaufman, Jay S, et al.
Publicado: (2004) -
Individual level covariate adjusted conditional autoregressive (indiCAR) model for disease mapping
por: Huque, Md. Hamidul, et al.
Publicado: (2016) -
Planning a method for covariate adjustment in individually randomised trials: a practical guide
por: Morris, Tim P., et al.
Publicado: (2022) -
A comparison of covariate adjustment approaches under model misspecification in individually randomized trials
por: Tackney, Mia S., et al.
Publicado: (2023) -
More efficient and inclusive time-to-event trials with covariate adjustment: a simulation study
por: Momal, Raphaëlle, et al.
Publicado: (2023)