Cargando…

Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate

Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferriero, Rosa, Iannuzzi, Clara, Manco, Giuseppe, Brunetti-Pierri, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551558/
https://www.ncbi.nlm.nih.gov/pubmed/25601413
http://dx.doi.org/10.1007/s10545-014-9808-2
Descripción
Sumario:Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases including cancer, diabetes, obesity, heart failure, and inherited PDHC deficiency. We investigated the inhibitory activity of phenylbutyrate toward PDKs and found that PDK isoforms 1-to-3 are inhibited whereas PDK4 is unaffected. Moreover, docking studies revealed putative binding sites of phenylbutyrate on PDK2 and 3 that are located on different sites compared to dichloroacetate (DCA), a previously known PDK inhibitor. Based on these findings, we showed both in cells and in mice that phenylbutyrate combined to DCA results in greater increase of PDHC activity compared to each drug alone. These results suggest that therapeutic efficacy can be enhanced by combination of drugs increasing PDHC enzyme activity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10545-014-9808-2) contains supplementary material, which is available to authorized users.