Cargando…
Large-Scale Variations in Lumber Value Recovery of Yellow Birch and Sugar Maple in Quebec, Canada
Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the po...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551735/ https://www.ncbi.nlm.nih.gov/pubmed/26313689 http://dx.doi.org/10.1371/journal.pone.0136674 |
Sumario: | Silvicultural restoration measures have been implemented in the northern hardwoods forests of southern Quebec, Canada, but their financial applicability is often hampered by the depleted state of the resource. To help identify sites most suited for the production of high quality timber, where the potential return on silvicultural investments should be the highest, this study assessed the impact of stand and site characteristics on timber quality in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). For this purpose, lumber value recovery (LVR), an estimate of the summed value of boards contained in a unit volume of round wood, was used as an indicator of timber quality. Predictions of LVR were made for yellow birch and sugar maple trees contained in a network of more than 22000 temporary sample plots across the Province. Next, stand-level variables were selected and models to predict LVR were built using the boosted regression trees method. Finally, the occurrence of spatial clusters was verified by a hotspot analysis. Results showed that in both species LVR was positively correlated with the stand age and structural diversity index, and negatively correlated with the number of merchantable stems. Yellow birch had higher LVR in areas with shallower soils, whereas sugar maple had higher LVR in regions with deeper soils. The hotspot analysis indicated that clusters of high and low LVR exist across the province for both species. Although it remains uncertain to what extent the variability of LVR may result from variations in past management practices or in inherent site quality, we argue that efforts to produce high quality timber should be prioritized in sites where LVR is predicted to be the highest. |
---|