Cargando…
Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis
The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551755/ https://www.ncbi.nlm.nih.gov/pubmed/26327813 http://dx.doi.org/10.7150/ijbs.11737 |
_version_ | 1782387611022655488 |
---|---|
author | Wang, Yi-Fang Yan, Jia-Jiun Tseng, Yung-Che Chen, Ruo-Dong Hwang, Pung-Pung |
author_facet | Wang, Yi-Fang Yan, Jia-Jiun Tseng, Yung-Che Chen, Ruo-Dong Hwang, Pung-Pung |
author_sort | Wang, Yi-Fang |
collection | PubMed |
description | The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl(-) homeostasis via Cl(-) transport uptake mechanisms. Previous studies in zebrafish identified Na(+)-Cl(-) cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl(-) uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl(-) channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl(-) environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl(-) content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl(-) uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl(-) homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated the cofunctional role of apical NCC2b and basolateral CLC-2c in the gill/skin Cl(-) uptake pathway. Taking the phylogenetic evidence into consideration, fish-specific NCC2b and CLC-2c may have coevolved to perform extra-renal Cl(-) uptake during the evolution of vertebrates in an aquatic environment. |
format | Online Article Text |
id | pubmed-4551755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-45517552015-08-31 Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis Wang, Yi-Fang Yan, Jia-Jiun Tseng, Yung-Che Chen, Ruo-Dong Hwang, Pung-Pung Int J Biol Sci Research Paper The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl(-) in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl(-) homeostasis via Cl(-) transport uptake mechanisms. Previous studies in zebrafish identified Na(+)-Cl(-) cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl(-) uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear. Of the in situ hybridization signals of twelve members of the clc Cl(-) channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl(-) environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl(-) content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl(-) uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl(-) homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs). Several lines of molecular and cellular physiological evidences demonstrated the cofunctional role of apical NCC2b and basolateral CLC-2c in the gill/skin Cl(-) uptake pathway. Taking the phylogenetic evidence into consideration, fish-specific NCC2b and CLC-2c may have coevolved to perform extra-renal Cl(-) uptake during the evolution of vertebrates in an aquatic environment. Ivyspring International Publisher 2015-08-15 /pmc/articles/PMC4551755/ /pubmed/26327813 http://dx.doi.org/10.7150/ijbs.11737 Text en © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. |
spellingShingle | Research Paper Wang, Yi-Fang Yan, Jia-Jiun Tseng, Yung-Che Chen, Ruo-Dong Hwang, Pung-Pung Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title | Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title_full | Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title_fullStr | Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title_full_unstemmed | Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title_short | Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis |
title_sort | molecular physiology of an extra-renal cl(-) uptake mechanism for body fluid cl(-) homeostasis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551755/ https://www.ncbi.nlm.nih.gov/pubmed/26327813 http://dx.doi.org/10.7150/ijbs.11737 |
work_keys_str_mv | AT wangyifang molecularphysiologyofanextrarenalcluptakemechanismforbodyfluidclhomeostasis AT yanjiajiun molecularphysiologyofanextrarenalcluptakemechanismforbodyfluidclhomeostasis AT tsengyungche molecularphysiologyofanextrarenalcluptakemechanismforbodyfluidclhomeostasis AT chenruodong molecularphysiologyofanextrarenalcluptakemechanismforbodyfluidclhomeostasis AT hwangpungpung molecularphysiologyofanextrarenalcluptakemechanismforbodyfluidclhomeostasis |