Cargando…
Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses
Variations in sample quality are frequently encountered in small RNA-sequencing experiments, and pose a major challenge in a differential expression analysis. Removal of high variation samples reduces noise, but at a cost of reducing power, thus limiting our ability to detect biologically meaningful...
Autores principales: | Liu, Ruijie, Holik, Aliaksei Z., Su, Shian, Jansz, Natasha, Chen, Kelan, Leong, Huei San, Blewitt, Marnie E., Asselin-Labat, Marie-Liesse, Smyth, Gordon K., Ritchie, Matthew E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551905/ https://www.ncbi.nlm.nih.gov/pubmed/25925576 http://dx.doi.org/10.1093/nar/gkv412 |
Ejemplares similares
-
RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods
por: Holik, Aliaksei Z., et al.
Publicado: (2017) -
Transcriptional profiling of the epigenetic regulator Smchd1
por: Liu, Ruijie, et al.
Publicado: (2015) -
Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung
por: Galvis, Laura A., et al.
Publicado: (2015) -
Covering all your bases: incorporating intron signal from RNA-seq data
por: Lee, Stuart, et al.
Publicado: (2020) -
Glimma: interactive graphics for gene expression analysis
por: Su, Shian, et al.
Publicado: (2017)