Cargando…

Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage

The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription facto...

Descripción completa

Detalles Bibliográficos
Autores principales: Fornelos, Nadine, Butala, Matej, Hodnik, Vesna, Anderluh, Gregor, Bamford, Jaana K., Salas, Margarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551915/
https://www.ncbi.nlm.nih.gov/pubmed/26138485
http://dx.doi.org/10.1093/nar/gkv634
Descripción
Sumario:The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription.