Cargando…
Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression
Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference ge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552031/ https://www.ncbi.nlm.nih.gov/pubmed/26313945 http://dx.doi.org/10.1371/journal.pone.0136714 |
_version_ | 1782387672060264448 |
---|---|
author | Elbl, Paula Navarro, Bruno V. de Oliveira, Leandro F. Almeida, Juliana Mosini, Amanda C. dos Santos, André L. W. Rossi, Magdalena Floh, Eny I. S. |
author_facet | Elbl, Paula Navarro, Bruno V. de Oliveira, Leandro F. Almeida, Juliana Mosini, Amanda C. dos Santos, André L. W. Rossi, Magdalena Floh, Eny I. S. |
author_sort | Elbl, Paula |
collection | PubMed |
description | Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference genes from an A. angustifolia transcriptome database. Variation in transcript levels was first evaluated in silico by comparing read counts and then by quantitative real-time PCR (qRT-PCR), resulting in the identification of six candidate genes. The consistency of transcript abundance was also calculated applying geNorm and NormFinder software packages followed by a validation approach using four target genes. The results presented here indicate that a diverse set of samples should ideally be used in order to identify constitutively expressed genes, and that the use of any two reference genes in combination, of the six tested genes, is sufficient for effective expression normalization. Finally, in agreement with the in silico prediction, a comprehensive analysis of the qRT-PCR data combined with validation analysis revealed that AaEIF4B-L and AaPP2A are the most suitable reference genes for comparative studies of A. angustifolia gene expression. |
format | Online Article Text |
id | pubmed-4552031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45520312015-09-01 Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression Elbl, Paula Navarro, Bruno V. de Oliveira, Leandro F. Almeida, Juliana Mosini, Amanda C. dos Santos, André L. W. Rossi, Magdalena Floh, Eny I. S. PLoS One Research Article Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference genes from an A. angustifolia transcriptome database. Variation in transcript levels was first evaluated in silico by comparing read counts and then by quantitative real-time PCR (qRT-PCR), resulting in the identification of six candidate genes. The consistency of transcript abundance was also calculated applying geNorm and NormFinder software packages followed by a validation approach using four target genes. The results presented here indicate that a diverse set of samples should ideally be used in order to identify constitutively expressed genes, and that the use of any two reference genes in combination, of the six tested genes, is sufficient for effective expression normalization. Finally, in agreement with the in silico prediction, a comprehensive analysis of the qRT-PCR data combined with validation analysis revealed that AaEIF4B-L and AaPP2A are the most suitable reference genes for comparative studies of A. angustifolia gene expression. Public Library of Science 2015-08-27 /pmc/articles/PMC4552031/ /pubmed/26313945 http://dx.doi.org/10.1371/journal.pone.0136714 Text en © 2015 Elbl et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Elbl, Paula Navarro, Bruno V. de Oliveira, Leandro F. Almeida, Juliana Mosini, Amanda C. dos Santos, André L. W. Rossi, Magdalena Floh, Eny I. S. Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title | Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title_full | Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title_fullStr | Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title_full_unstemmed | Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title_short | Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression |
title_sort | identification and evaluation of reference genes for quantitative analysis of brazilian pine (araucaria angustifolia bertol. kuntze) gene expression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552031/ https://www.ncbi.nlm.nih.gov/pubmed/26313945 http://dx.doi.org/10.1371/journal.pone.0136714 |
work_keys_str_mv | AT elblpaula identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT navarrobrunov identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT deoliveiraleandrof identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT almeidajuliana identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT mosiniamandac identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT dossantosandrelw identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT rossimagdalena identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression AT flohenyis identificationandevaluationofreferencegenesforquantitativeanalysisofbrazilianpinearaucariaangustifoliabertolkuntzegeneexpression |