Cargando…

Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis

To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in...

Descripción completa

Detalles Bibliográficos
Autores principales: Nowinski, Sara M., Solmonson, Ashley, Rundhaug, Joyce E., Rho, Okkyung, Cho, Jiyoon, Lago, Cory U., Riley, Christopher L., Lee, Sunhee, Kohno, Shohei, Dao, Christine K., Nikawa, Takeshi, Bratton, Shawn B., Wright, Casey W., Fischer, Susan M., DiGiovanni, John, Mills, Edward M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552083/
https://www.ncbi.nlm.nih.gov/pubmed/26310111
http://dx.doi.org/10.1038/ncomms9137
_version_ 1782387678817288192
author Nowinski, Sara M.
Solmonson, Ashley
Rundhaug, Joyce E.
Rho, Okkyung
Cho, Jiyoon
Lago, Cory U.
Riley, Christopher L.
Lee, Sunhee
Kohno, Shohei
Dao, Christine K.
Nikawa, Takeshi
Bratton, Shawn B.
Wright, Casey W.
Fischer, Susan M.
DiGiovanni, John
Mills, Edward M.
author_facet Nowinski, Sara M.
Solmonson, Ashley
Rundhaug, Joyce E.
Rho, Okkyung
Cho, Jiyoon
Lago, Cory U.
Riley, Christopher L.
Lee, Sunhee
Kohno, Shohei
Dao, Christine K.
Nikawa, Takeshi
Bratton, Shawn B.
Wright, Casey W.
Fischer, Susan M.
DiGiovanni, John
Mills, Edward M.
author_sort Nowinski, Sara M.
collection PubMed
description To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling.
format Online
Article
Text
id pubmed-4552083
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45520832015-09-14 Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis Nowinski, Sara M. Solmonson, Ashley Rundhaug, Joyce E. Rho, Okkyung Cho, Jiyoon Lago, Cory U. Riley, Christopher L. Lee, Sunhee Kohno, Shohei Dao, Christine K. Nikawa, Takeshi Bratton, Shawn B. Wright, Casey W. Fischer, Susan M. DiGiovanni, John Mills, Edward M. Nat Commun Article To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling. Nature Pub. Group 2015-08-27 /pmc/articles/PMC4552083/ /pubmed/26310111 http://dx.doi.org/10.1038/ncomms9137 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Nowinski, Sara M.
Solmonson, Ashley
Rundhaug, Joyce E.
Rho, Okkyung
Cho, Jiyoon
Lago, Cory U.
Riley, Christopher L.
Lee, Sunhee
Kohno, Shohei
Dao, Christine K.
Nikawa, Takeshi
Bratton, Shawn B.
Wright, Casey W.
Fischer, Susan M.
DiGiovanni, John
Mills, Edward M.
Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title_full Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title_fullStr Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title_full_unstemmed Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title_short Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis
title_sort mitochondrial uncoupling links lipid catabolism to akt inhibition and resistance to tumorigenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552083/
https://www.ncbi.nlm.nih.gov/pubmed/26310111
http://dx.doi.org/10.1038/ncomms9137
work_keys_str_mv AT nowinskisaram mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT solmonsonashley mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT rundhaugjoycee mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT rhookkyung mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT chojiyoon mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT lagocoryu mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT rileychristopherl mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT leesunhee mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT kohnoshohei mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT daochristinek mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT nikawatakeshi mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT brattonshawnb mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT wrightcaseyw mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT fischersusanm mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT digiovannijohn mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis
AT millsedwardm mitochondrialuncouplinglinkslipidcatabolismtoaktinhibitionandresistancetotumorigenesis