Cargando…

Transcriptional slippage in the positive-sense RNA virus family Potyviridae

The family Potyviridae encompasses ∼30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO,...

Descripción completa

Detalles Bibliográficos
Autores principales: Olspert, Allan, Chung, Betty Y-W, Atkins, John F, Carr, John P, Firth, Andrew E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552492/
https://www.ncbi.nlm.nih.gov/pubmed/26113364
http://dx.doi.org/10.15252/embr.201540509
Descripción
Sumario:The family Potyviridae encompasses ∼30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO, which is essential for virus cell-to-cell movement. However, the frameshift expression mechanism has hitherto remained unknown. Here, we demonstrate that transcriptional slippage, specific to the viral RNA polymerase, results in a population of transcripts with an additional “A” inserted within a highly conserved GAAAAAA sequence, thus enabling expression of P3N-PIPO. The slippage efficiency is ∼2% in Turnip mosaic virus and slippage is inhibited by mutations in the GAAAAAA sequence. While utilization of transcriptional slippage is well known in negative-sense RNA viruses such as Ebola, mumps and measles, to our knowledge this is the first report of its widespread utilization for gene expression in positive-sense RNA viruses.