Cargando…
Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response
Time course transcriptome datasets are commonly used to predict key gene regulators associated with stress responses and to explore gene functionality. Techniques developed to extract causal relationships between genes from high throughput time course expression data are limited by low signal levels...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552565/ https://www.ncbi.nlm.nih.gov/pubmed/26317202 http://dx.doi.org/10.1371/journal.pone.0136591 |
_version_ | 1782387747980312576 |
---|---|
author | Koryachko, Alexandr Matthiadis, Anna Muhammad, Durreshahwar Foret, Jessica Brady, Siobhan M. Ducoste, Joel J. Tuck, James Long, Terri A. Williams, Cranos |
author_facet | Koryachko, Alexandr Matthiadis, Anna Muhammad, Durreshahwar Foret, Jessica Brady, Siobhan M. Ducoste, Joel J. Tuck, James Long, Terri A. Williams, Cranos |
author_sort | Koryachko, Alexandr |
collection | PubMed |
description | Time course transcriptome datasets are commonly used to predict key gene regulators associated with stress responses and to explore gene functionality. Techniques developed to extract causal relationships between genes from high throughput time course expression data are limited by low signal levels coupled with noise and sparseness in time points. We deal with these limitations by proposing the Cluster and Differential Alignment Algorithm (CDAA). This algorithm was designed to process transcriptome data by first grouping genes based on stages of activity and then using similarities in gene expression to predict influential connections between individual genes. Regulatory relationships are assigned based on pairwise alignment scores generated using the expression patterns of two genes and some inferred delay between the regulator and the observed activity of the target. We applied the CDAA to an iron deficiency time course microarray dataset to identify regulators that influence 7 target transcription factors known to participate in the Arabidopsis thaliana iron deficiency response. The algorithm predicted that 7 regulators previously unlinked to iron homeostasis influence the expression of these known transcription factors. We validated over half of predicted influential relationships using qRT-PCR expression analysis in mutant backgrounds. One predicted regulator-target relationship was shown to be a direct binding interaction according to yeast one-hybrid (Y1H) analysis. These results serve as a proof of concept emphasizing the utility of the CDAA for identifying unknown or missing nodes in regulatory cascades, providing the fundamental knowledge needed for constructing predictive gene regulatory networks. We propose that this tool can be used successfully for similar time course datasets to extract additional information and infer reliable regulatory connections for individual genes. |
format | Online Article Text |
id | pubmed-4552565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45525652015-09-10 Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response Koryachko, Alexandr Matthiadis, Anna Muhammad, Durreshahwar Foret, Jessica Brady, Siobhan M. Ducoste, Joel J. Tuck, James Long, Terri A. Williams, Cranos PLoS One Research Article Time course transcriptome datasets are commonly used to predict key gene regulators associated with stress responses and to explore gene functionality. Techniques developed to extract causal relationships between genes from high throughput time course expression data are limited by low signal levels coupled with noise and sparseness in time points. We deal with these limitations by proposing the Cluster and Differential Alignment Algorithm (CDAA). This algorithm was designed to process transcriptome data by first grouping genes based on stages of activity and then using similarities in gene expression to predict influential connections between individual genes. Regulatory relationships are assigned based on pairwise alignment scores generated using the expression patterns of two genes and some inferred delay between the regulator and the observed activity of the target. We applied the CDAA to an iron deficiency time course microarray dataset to identify regulators that influence 7 target transcription factors known to participate in the Arabidopsis thaliana iron deficiency response. The algorithm predicted that 7 regulators previously unlinked to iron homeostasis influence the expression of these known transcription factors. We validated over half of predicted influential relationships using qRT-PCR expression analysis in mutant backgrounds. One predicted regulator-target relationship was shown to be a direct binding interaction according to yeast one-hybrid (Y1H) analysis. These results serve as a proof of concept emphasizing the utility of the CDAA for identifying unknown or missing nodes in regulatory cascades, providing the fundamental knowledge needed for constructing predictive gene regulatory networks. We propose that this tool can be used successfully for similar time course datasets to extract additional information and infer reliable regulatory connections for individual genes. Public Library of Science 2015-08-28 /pmc/articles/PMC4552565/ /pubmed/26317202 http://dx.doi.org/10.1371/journal.pone.0136591 Text en © 2015 Koryachko et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Koryachko, Alexandr Matthiadis, Anna Muhammad, Durreshahwar Foret, Jessica Brady, Siobhan M. Ducoste, Joel J. Tuck, James Long, Terri A. Williams, Cranos Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title | Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title_full | Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title_fullStr | Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title_full_unstemmed | Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title_short | Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response |
title_sort | clustering and differential alignment algorithm: identification of early stage regulators in the arabidopsis thaliana iron deficiency response |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552565/ https://www.ncbi.nlm.nih.gov/pubmed/26317202 http://dx.doi.org/10.1371/journal.pone.0136591 |
work_keys_str_mv | AT koryachkoalexandr clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT matthiadisanna clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT muhammaddurreshahwar clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT foretjessica clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT bradysiobhanm clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT ducostejoelj clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT tuckjames clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT longterria clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse AT williamscranos clusteringanddifferentialalignmentalgorithmidentificationofearlystageregulatorsinthearabidopsisthalianairondeficiencyresponse |