Cargando…
Predicting Extreme Droughts in Savannah Africa: A Comparison of Proxy and Direct Measures in Detecting Biomass Fluctuations, Trends and Their Causes
We monitored pasture biomass on 20 permanent plots over 35 years to gauge the reliability of rainfall and NDVI as proxy measures of forage shortfalls in a savannah ecosystem. Both proxies are reliable indicators of pasture biomass at the onset of dry periods but fail to predict shortfalls in prolong...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552646/ https://www.ncbi.nlm.nih.gov/pubmed/26317512 http://dx.doi.org/10.1371/journal.pone.0136516 |
Sumario: | We monitored pasture biomass on 20 permanent plots over 35 years to gauge the reliability of rainfall and NDVI as proxy measures of forage shortfalls in a savannah ecosystem. Both proxies are reliable indicators of pasture biomass at the onset of dry periods but fail to predict shortfalls in prolonged dry spells. In contrast, grazing pressure predicts pasture deficits with a high degree of accuracy. Large herbivores play a primary role in determining the severity of pasture deficits and variation across habitats. Grazing pressure also explains oscillations in plant biomass unrelated to rainfall. Plant biomass has declined steadily and biomass per unit of rainfall has fallen by a third, corresponding to a doubling in grazing intensity over the study period. The rising probability of forage deficits fits local pastoral perceptions of an increasing frequency of extreme shortfalls. The decline in forage is linked to sedentarization, range loss and herbivore compression into drought refuges, rather than climate change. The results show that the decline in rangeland productivity and increasing frequency of pasture shortfalls can be ameliorated by better husbandry practices and reinforces the need for ground monitoring to complement remote sensing in forecasting pasture shortfalls. |
---|