Cargando…
Do Brain Networks Evolve by Maximizing Their Information Flow Capacity?
We propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same beh...
Autores principales: | Antonopoulos, Chris G., Srivastava, Shambhavi, Pinto, Sandro E. de S., Baptista, Murilo S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552863/ https://www.ncbi.nlm.nih.gov/pubmed/26317592 http://dx.doi.org/10.1371/journal.pcbi.1004372 |
Ejemplares similares
-
Maintaining extensivity in evolutionary multiplex networks
por: Antonopoulos, Chris G., et al.
Publicado: (2017) -
Production and Transfer of Energy and Information in Hamiltonian Systems
por: Antonopoulos, Chris G., et al.
Publicado: (2014) -
Maximizing the optical network capacity
por: Bayvel, Polina, et al.
Publicado: (2016) -
Uncover disease genes by maximizing information flow in the phenome–interactome network
por: Chen, Yong, et al.
Publicado: (2011) -
Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics
por: Mäki-Marttunen, Tuomo, et al.
Publicado: (2013)