Cargando…
Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study
In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of cert...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552941/ https://www.ncbi.nlm.nih.gov/pubmed/26317853 http://dx.doi.org/10.1371/journal.pone.0136530 |
_version_ | 1782387819020288000 |
---|---|
author | Shafiei, Seyedeh Sara Solati-Hashjin, Mehran Samadikuchaksaraei, Ali Kalantarinejad, Reza Asadi-Eydivand, Mitra Abu Osman, Noor Azuan |
author_facet | Shafiei, Seyedeh Sara Solati-Hashjin, Mehran Samadikuchaksaraei, Ali Kalantarinejad, Reza Asadi-Eydivand, Mitra Abu Osman, Noor Azuan |
author_sort | Shafiei, Seyedeh Sara |
collection | PubMed |
description | In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO(3) Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. |
format | Online Article Text |
id | pubmed-4552941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45529412015-09-10 Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study Shafiei, Seyedeh Sara Solati-Hashjin, Mehran Samadikuchaksaraei, Ali Kalantarinejad, Reza Asadi-Eydivand, Mitra Abu Osman, Noor Azuan PLoS One Research Article In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO(3) Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. Public Library of Science 2015-08-28 /pmc/articles/PMC4552941/ /pubmed/26317853 http://dx.doi.org/10.1371/journal.pone.0136530 Text en © 2015 Shafiei et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shafiei, Seyedeh Sara Solati-Hashjin, Mehran Samadikuchaksaraei, Ali Kalantarinejad, Reza Asadi-Eydivand, Mitra Abu Osman, Noor Azuan Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title | Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title_full | Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title_fullStr | Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title_full_unstemmed | Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title_short | Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study |
title_sort | epigallocatechin gallate/layered double hydroxide nanohybrids: preparation, characterization, and in vitro anti-tumor study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552941/ https://www.ncbi.nlm.nih.gov/pubmed/26317853 http://dx.doi.org/10.1371/journal.pone.0136530 |
work_keys_str_mv | AT shafieiseyedehsara epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy AT solatihashjinmehran epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy AT samadikuchaksaraeiali epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy AT kalantarinejadreza epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy AT asadieydivandmitra epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy AT abuosmannoorazuan epigallocatechingallatelayereddoublehydroxidenanohybridspreparationcharacterizationandinvitroantitumorstudy |