Cargando…
Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
The Na(+)K(+)2Cl(−) cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma me...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553341/ https://www.ncbi.nlm.nih.gov/pubmed/26351455 http://dx.doi.org/10.1155/2015/505294 |
_version_ | 1782387872903462912 |
---|---|
author | Singh, Richa Almutairi, Mohammed Mashari Pacheco-Andrade, Romario Almiahuob, Mohamed Y. Mahmoud Di Fulvio, Mauricio |
author_facet | Singh, Richa Almutairi, Mohammed Mashari Pacheco-Andrade, Romario Almiahuob, Mohamed Y. Mahmoud Di Fulvio, Mauricio |
author_sort | Singh, Richa |
collection | PubMed |
description | The Na(+)K(+)2Cl(−) cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. |
format | Online Article Text |
id | pubmed-4553341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-45533412015-09-08 Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2 Singh, Richa Almutairi, Mohammed Mashari Pacheco-Andrade, Romario Almiahuob, Mohamed Y. Mahmoud Di Fulvio, Mauricio Int J Cell Biol Research Article The Na(+)K(+)2Cl(−) cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. Hindawi Publishing Corporation 2015 2015-08-17 /pmc/articles/PMC4553341/ /pubmed/26351455 http://dx.doi.org/10.1155/2015/505294 Text en Copyright © 2015 Richa Singh et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Singh, Richa Almutairi, Mohammed Mashari Pacheco-Andrade, Romario Almiahuob, Mohamed Y. Mahmoud Di Fulvio, Mauricio Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2 |
title | Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
|
title_full | Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
|
title_fullStr | Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
|
title_full_unstemmed | Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
|
title_short | Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
|
title_sort | impact of hybrid and complex n-glycans on cell surface targeting of the endogenous chloride cotransporter slc12a2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553341/ https://www.ncbi.nlm.nih.gov/pubmed/26351455 http://dx.doi.org/10.1155/2015/505294 |
work_keys_str_mv | AT singhricha impactofhybridandcomplexnglycansoncellsurfacetargetingoftheendogenouschloridecotransporterslc12a2 AT almutairimohammedmashari impactofhybridandcomplexnglycansoncellsurfacetargetingoftheendogenouschloridecotransporterslc12a2 AT pachecoandraderomario impactofhybridandcomplexnglycansoncellsurfacetargetingoftheendogenouschloridecotransporterslc12a2 AT almiahuobmohamedymahmoud impactofhybridandcomplexnglycansoncellsurfacetargetingoftheendogenouschloridecotransporterslc12a2 AT difulviomauricio impactofhybridandcomplexnglycansoncellsurfacetargetingoftheendogenouschloridecotransporterslc12a2 |