Cargando…
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary stat...
Autores principales: | Park, Danny S., Brown, Brielin, Eng, Celeste, Huntsman, Scott, Hu, Donglei, Torgerson, Dara G., Burchard, Esteban G., Zaitlen, Noah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553832/ https://www.ncbi.nlm.nih.gov/pubmed/26072481 http://dx.doi.org/10.1093/bioinformatics/btv230 |
Ejemplares similares
-
Inferring parental genomic ancestries using pooled semi-Markov processes
por: Zou, James Y., et al.
Publicado: (2015) -
Genome-wide detection of intervals of genetic heterogeneity associated with complex traits
por: Llinares-López, Felipe, et al.
Publicado: (2015) -
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
PAGER: constructing PAGs and new PAG–PAG relationships for network biology
por: Yue, Zongliang, et al.
Publicado: (2015) -
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
por: Speicher, Nora K., et al.
Publicado: (2015)