Cargando…

Comparative growth analysis of capsulated (Vi+) and acapsulated (Vi-) Salmonella typhi isolates in human blood

Salmonella enterica serovar Typhi (S. Typhi) is a human restricted pathogen. It biosynthesizes a virulence capsular polysaccharide named as Vi antigen. S. Typhi regulates expression of genes involved in the biosynthesis of Vi antigen in response to osmolarity. Beside Vi-positive isolates, Vi-negativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Liaquat, Sadia, Sarwar, Yasra, Ali, Aamir, Haque, Abdul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553862/
https://www.ncbi.nlm.nih.gov/pubmed/26417360
http://dx.doi.org/10.17179/excli2014-674
Descripción
Sumario:Salmonella enterica serovar Typhi (S. Typhi) is a human restricted pathogen. It biosynthesizes a virulence capsular polysaccharide named as Vi antigen. S. Typhi regulates expression of genes involved in the biosynthesis of Vi antigen in response to osmolarity. Beside Vi-positive isolates, Vi-negative (acapsulated) isolates are also pathogenic. However, Vi-positive isolates are more prevalent. The present study was planned to investigate comparative growth of Vi-positive and Vi-negative S. Typhi isolates in an ex vivo human whole blood model. Four isolates of each type were tested for growth in human whole blood and in an enrichment medium (Tryptic soy broth-TSB) as a control. It was found that capsulated (Vi-positive) strains formed smooth circular colonies and grew with shorter lag and generation time than Vi-negative isolates. Overall growth pattern of S. Typhi isolates both in vitro and ex vivo conditions showed that Vi-positive isolates grew at a faster rate. Especially in human blood, the lag time of acapsulated isolates was almost doubled as compared to capsulated S. Typhi isolates. It was also observed that Vi-negative isolates reduced in number up to 81 % during the first 12 hours of incubation in human whole blood. Interestingly, both types of isolates had similar growth curve in TSB indicating that Vi capsule is dispensable for bacterial growth in vitro. This study shows for the first time that absence of capsular antigen retards the growth of Vi-negative isolates on initial contact with human blood, but with passage of time they adjust themselves according to the new environment.