Cargando…
Differentiation of Donor-Derived Cells Into Microglia After Umbilical Cord Blood Stem Cell Transplantation
Recent studies have indicated that microglia originate from immature progenitors in the yolk sac. After birth, microglial populations are maintained under normal conditions via self-renewal without the need to recruit monocyte-derived microglial precursors. Peripheral cell invasion of the brain pare...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association of Neuropathologists
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554226/ https://www.ncbi.nlm.nih.gov/pubmed/26226134 http://dx.doi.org/10.1097/NEN.0000000000000234 |
Sumario: | Recent studies have indicated that microglia originate from immature progenitors in the yolk sac. After birth, microglial populations are maintained under normal conditions via self-renewal without the need to recruit monocyte-derived microglial precursors. Peripheral cell invasion of the brain parenchyma can only occur with disruption of the blood-brain barrier. Here, we report an autopsy case of an umbilical cord blood transplant recipient in whom cells derived from the donor blood differentiated into ramified microglia in the recipient brain parenchyma. Although the blood-brain barrier and glia limitans seemed to prevent invasion of these donor-derived cells, most of the invading donor-derived ramified cells were maintained in the cerebral cortex. This result suggests that invasion of donor-derived cells occurs through the pial membrane. |
---|