Cargando…

Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer

Electroporation is a platform technology for drug and gene delivery. When applied to cell in vitro or tissues in vivo, it leads to an increase in membrane permeability for molecules which otherwise cannot enter the cell (e.g., siRNA, plasmid DNA, and some chemotherapeutic drugs). The therapeutic eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Sersa, Gregor, Teissie, Justin, Cemazar, Maja, Signori, Emanuela, Kamensek, Urska, Marshall, Guillermo, Miklavcic, Damijan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554735/
https://www.ncbi.nlm.nih.gov/pubmed/26067277
http://dx.doi.org/10.1007/s00262-015-1724-2
Descripción
Sumario:Electroporation is a platform technology for drug and gene delivery. When applied to cell in vitro or tissues in vivo, it leads to an increase in membrane permeability for molecules which otherwise cannot enter the cell (e.g., siRNA, plasmid DNA, and some chemotherapeutic drugs). The therapeutic effectiveness of delivered chemotherapeutics or nucleic acids depends greatly on their successful and efficient delivery to the target tissue. Therefore, the understanding of different principles of drug and gene delivery is necessary and needs to be taken into account according to the specificity of their delivery to tumors and/or normal tissues. Based on the current knowledge, electrochemotherapy (a combination of drug and electric pulses) is used for tumor treatment and has shown great potential. Its local effectiveness is up to 80 % of local tumor control, however, without noticeable effect on metastases. In an attempt to increase systemic antitumor effectiveness of electrochemotherapy, electrotransfer of genes with immunomodulatory effect (immunogene electrotransfer) could be used as adjuvant treatment. Since electrochemotherapy can induce immunogenic cell death, adjuvant immunogene electrotransfer to peritumoral tissue could lead to locoregional effect as well as the abscopal effect on distant untreated metastases. Therefore, we propose a combination of electrochemotherapy with peritumoral IL-12 electrotransfer, as a proof of principle, using electrochemotherapy boosted with immunogene electrotransfer as in situ vaccination for successful tumor treatment.