Cargando…

Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage

To investigate the effects of high-altitude exposure on response inhibition, event-related potential (ERP) components N2 and P3 were measured in Go/NoGo task. The participants included an ‘immigrant’ high-altitude group (who had lived at high altitude for three years but born at low altitude) and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Hailin, Wang, Yan, Wu, Jianhui, Luo, Ping, Han, Buxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555177/
https://www.ncbi.nlm.nih.gov/pubmed/26324166
http://dx.doi.org/10.1038/srep13701
Descripción
Sumario:To investigate the effects of high-altitude exposure on response inhibition, event-related potential (ERP) components N2 and P3 were measured in Go/NoGo task. The participants included an ‘immigrant’ high-altitude group (who had lived at high altitude for three years but born at low altitude) and a low-altitude group (living in low altitude only). Although the behavioural data showed no significant differences between the two groups, a delayed latency of NoGo-N2 was found in the high-altitude group compared to the low-altitude group. Moreover, larger N2 and smaller P3 amplitudes were found in the high-altitude group compared to the low-altitude group, for both the Go and NoGo conditions. These findings suggest that high-altitude exposure affects response inhibition with regard to processing speed during the conflict monitoring stage. In addition, high altitude generally increases the neural activity in the matching step of information processing and attentional resources. These results may provide some insights into the neurocognitive basis of the effects on high-altitude exposure on response inhibition.