Cargando…

Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo

Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughes, Amanda L., Rando, Oliver J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555225/
https://www.ncbi.nlm.nih.gov/pubmed/26175451
http://dx.doi.org/10.1534/g3.115.020271
_version_ 1782388158656151552
author Hughes, Amanda L.
Rando, Oliver J.
author_facet Hughes, Amanda L.
Rando, Oliver J.
author_sort Hughes, Amanda L.
collection PubMed
description Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species—Saccharomyces cerevisiae and Kluyveromyces lactis—is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner.
format Online
Article
Text
id pubmed-4555225
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-45552252015-09-01 Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo Hughes, Amanda L. Rando, Oliver J. G3 (Bethesda) Investigations Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species—Saccharomyces cerevisiae and Kluyveromyces lactis—is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner. Genetics Society of America 2015-07-14 /pmc/articles/PMC4555225/ /pubmed/26175451 http://dx.doi.org/10.1534/g3.115.020271 Text en Copyright © 2015 Hughes and Rando http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Hughes, Amanda L.
Rando, Oliver J.
Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title_full Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title_fullStr Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title_full_unstemmed Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title_short Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo
title_sort comparative genomics reveals chd1 as a determinant of nucleosome spacing in vivo
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555225/
https://www.ncbi.nlm.nih.gov/pubmed/26175451
http://dx.doi.org/10.1534/g3.115.020271
work_keys_str_mv AT hughesamandal comparativegenomicsrevealschd1asadeterminantofnucleosomespacinginvivo
AT randooliverj comparativegenomicsrevealschd1asadeterminantofnucleosomespacinginvivo