Cargando…
Model Averaging for Improving Inference from Causal Diagrams
Model selection is an integral, yet contentious, component of epidemiologic research. Unfortunately, there remains no consensus on how to identify a single, best model among multiple candidate models. Researchers may be prone to selecting the model that best supports their a priori, preferred result...
Autores principales: | Hamra, Ghassan B., Kaufman, Jay S., Vahratian, Anjel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555287/ https://www.ncbi.nlm.nih.gov/pubmed/26270672 http://dx.doi.org/10.3390/ijerph120809391 |
Ejemplares similares
-
Self-Rated Health and Health Care Use Among Women With Histories of Gestational Diabetes Mellitus
por: Kim, Catherine, et al.
Publicado: (2010) -
Causal Diagrams: Pitfalls and Tips
por: Suzuki, Etsuji, et al.
Publicado: (2020) -
Causal diagrams in systems epidemiology
por: Joffe, Michael, et al.
Publicado: (2012) -
Using network analysis to identify leverage points based on causal loop diagrams leads to false inference
por: Crielaard, Loes, et al.
Publicado: (2023) -
Causal diagrams and the cross-sectional study
por: Shahar, Eyal, et al.
Publicado: (2013)