Cargando…

Integrins mediate mechanical compression–induced endothelium-dependent vasodilation through endothelial nitric oxide pathway

Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiao, Kassab, Ghassan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555471/
https://www.ncbi.nlm.nih.gov/pubmed/26324675
http://dx.doi.org/10.1085/jgp.201411350
Descripción
Sumario:Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α(5)β(1) or α(v)β(3) antibodies attenuated cyclic compression–induced vasodilation and NO(x) (NO(−)(2) and NO(−)(3)) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression–induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading.