Cargando…

Modelling human mobility patterns using photographic data shared online

Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individual...

Descripción completa

Detalles Bibliográficos
Autores principales: Barchiesi, Daniele, Preis, Tobias, Bishop, Steven, Moat, Helen Susannah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555850/
https://www.ncbi.nlm.nih.gov/pubmed/26361545
http://dx.doi.org/10.1098/rsos.150046
Descripción
Sumario:Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individuals who uploaded geo-tagged images from locations within the UK to the Flickr photo-sharing website. Inspired by the theory of Lévy flights, which has previously been used to describe the statistical properties of human mobility, we design a machine learning algorithm to infer the probability of finding people in geographical locations and the probability of movement between pairs of locations. Our findings are in general agreement with official figures in the UK and on travel flows between pairs of major cities, suggesting that online data sources may be used to quantify and model large-scale human mobility patterns.