Cargando…

Repair of segmental bone defects in the maxilla by transport disc distraction osteogenesis: Clinical experience with a new device

The bones of the maxillary complex are vital for normal oro-nasal function and facial cosmetics. Maxillary tumor excision results in large defects that commonly include segments of the alveolar and palatine processes, compromising eating, speech and facial appearance. Unlike the conventional approac...

Descripción completa

Detalles Bibliográficos
Autores principales: Boonzaier, James, Vicatos, George, Hendricks, Rushdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555956/
https://www.ncbi.nlm.nih.gov/pubmed/26389041
http://dx.doi.org/10.4103/2231-0746.161087
Descripción
Sumario:The bones of the maxillary complex are vital for normal oro-nasal function and facial cosmetics. Maxillary tumor excision results in large defects that commonly include segments of the alveolar and palatine processes, compromising eating, speech and facial appearance. Unlike the conventional approach to maxillary defect repair by vascularized bone grafting, transport disc distraction osteogenesis (TDDO) stimulates new bone by separating the healing callus, and stimulates growth of surrounding soft tissues as well. Bone formed in this way closely mimics the parent bone in form and internal structure, producing a superior anatomical, functional and cosmetic result. Historically, TDDO has been successfully used to close small horizontal cleft defects in the maxilla, not exceeding 25 mm. Fujioka et al. reported in 2012 that “no bone transporter corresponding to the (large) size of the oro-antral fistula is marketed. The authors report the successful treatment of 4 cases involving alveolar defects of between 25 mm and 80 mm in length.