Cargando…
Screening of feature genes in distinguishing different types of breast cancer using support vector machine
OBJECTIVE: To screen the feature genes in estrogen receptor-positive (ER+) breast cancer in comparison with estrogen receptor-negative (ER−) breast cancer. METHODS: Nine microarray data of ER+ and ER− breast cancer samples were collected from Gene Expression Omnibus database. After preprocessing, da...
Autores principales: | Wang, Qi, Liu, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556031/ https://www.ncbi.nlm.nih.gov/pubmed/26347014 http://dx.doi.org/10.2147/OTT.S85271 |
Ejemplares similares
-
Deep Features for Training Support Vector Machines
por: Nanni, Loris, et al.
Publicado: (2021) -
Distinguishing Protein-Coding from Non-Coding RNAs through Support Vector Machines
por: Liu, Jinfeng, et al.
Publicado: (2006) -
A Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins
por: Verma, Ruchi, et al.
Publicado: (2012) -
Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection
por: Henneges, Carsten, et al.
Publicado: (2009) -
Gene/protein name recognition based on support vector machine using dictionary as features
por: Mitsumori, Tomohiro, et al.
Publicado: (2005)