Cargando…

Role of Ryanodine and NMDA Receptors in Tetrabromobisphenol A-Induced Calcium Imbalance and Cytotoxicity in Primary Cultures of Rat Cerebellar Granule Cells

The study assessed the role of ryanodine receptors (RyRs) and NMDA receptors (NMDARs) in the Ca(2+) transients and cytotoxicity induced in neurons by the brominated flame retardant tetrabromobisphenol A (TBBPA). Primary cultures of rat cerebellar granule cells (CGC) were exposed to 7.5, 10, or 25 µM...

Descripción completa

Detalles Bibliográficos
Autores principales: Zieminska, Elzbieta, Stafiej, Aleksandra, Toczylowska, Beata, Albrecht, Jan, Lazarewicz, Jerzy W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556744/
https://www.ncbi.nlm.nih.gov/pubmed/26215658
http://dx.doi.org/10.1007/s12640-015-9546-8
Descripción
Sumario:The study assessed the role of ryanodine receptors (RyRs) and NMDA receptors (NMDARs) in the Ca(2+) transients and cytotoxicity induced in neurons by the brominated flame retardant tetrabromobisphenol A (TBBPA). Primary cultures of rat cerebellar granule cells (CGC) were exposed to 7.5, 10, or 25 µM TBBPA for 30 min, and cell viability was assessed after 24 h. Moreover, (45)Ca uptake was measured, and changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) were studied using the fluo-3 probe. The involvement of NMDARs and RyRs was verified using the pertinent receptor antagonists, 0.5 µM MK-801 and 2.5 µM bastadin 12, which was co-applied with 200 µM ryanodine, respectively. The results show that TBBPA concentration-dependently induces an increase in [Ca(2+)](i). This effect was partly suppressed by the inhibitors of RyRs and NMDARs when administered separately, and completely abrogated by their combined application. A concentration-dependent activation of (45)Ca uptake by TBBPA was prevented by MK-801 but not by RyR inhibitors. Application of ≥10 µM TBBPA concentration-dependently reduced neuronal viability, and this effect was only partially and to an equal degree reduced by NMDAR and RyR antagonists given either separately or in combination. Our results directly demonstrate that both the RyR-mediated release of intracellular Ca(2+) and the NMDAR-mediated influx of Ca(2+) into neurons participate in the mechanism of TBBPA-induced Ca(2+) imbalance in CGC and play a significant, albeit not exclusive, role in the mechanisms of TBBPA cytotoxicity.