Cargando…
Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture
Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC455688/ https://www.ncbi.nlm.nih.gov/pubmed/15230976 http://dx.doi.org/10.1186/1477-3155-2-7 |
_version_ | 1782121590105833472 |
---|---|
author | Suzuki, Ikurou Sugio, Yoshihiro Moriguchi, Hiroyuki Jimbo, Yasuhiko Yasuda, Kenji |
author_facet | Suzuki, Ikurou Sugio, Yoshihiro Moriguchi, Hiroyuki Jimbo, Yasuhiko Yasuda, Kenji |
author_sort | Suzuki, Ikurou |
collection | PubMed |
description | Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks. |
format | Text |
id | pubmed-455688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-4556882004-07-15 Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture Suzuki, Ikurou Sugio, Yoshihiro Moriguchi, Hiroyuki Jimbo, Yasuhiko Yasuda, Kenji J Nanobiotechnology Research Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks. BioMed Central 2004-07-01 /pmc/articles/PMC455688/ /pubmed/15230976 http://dx.doi.org/10.1186/1477-3155-2-7 Text en Copyright © 2004 Suzuki et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Suzuki, Ikurou Sugio, Yoshihiro Moriguchi, Hiroyuki Jimbo, Yasuhiko Yasuda, Kenji Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title | Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title_full | Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title_fullStr | Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title_full_unstemmed | Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title_short | Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
title_sort | modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC455688/ https://www.ncbi.nlm.nih.gov/pubmed/15230976 http://dx.doi.org/10.1186/1477-3155-2-7 |
work_keys_str_mv | AT suzukiikurou modificationofaneuronalnetworkdirectionusingstepwisephotothermaletchingofanagarosearchitecture AT sugioyoshihiro modificationofaneuronalnetworkdirectionusingstepwisephotothermaletchingofanagarosearchitecture AT moriguchihiroyuki modificationofaneuronalnetworkdirectionusingstepwisephotothermaletchingofanagarosearchitecture AT jimboyasuhiko modificationofaneuronalnetworkdirectionusingstepwisephotothermaletchingofanagarosearchitecture AT yasudakenji modificationofaneuronalnetworkdirectionusingstepwisephotothermaletchingofanagarosearchitecture |