Cargando…

Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide

The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial stra...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hong, Contryman, Alex W., Qian, Xiaofeng, Ardakani, Sina Moeini, Gong, Yongji, Wang, Xingli, Weisse, Jeffery M., Lee, Chi Hwan, Zhao, Jiheng, Ajayan, Pulickel M., Li, Ju, Manoharan, Hari C., Zheng, Xiaolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557352/
https://www.ncbi.nlm.nih.gov/pubmed/26088550
http://dx.doi.org/10.1038/ncomms8381
_version_ 1782388492810059776
author Li, Hong
Contryman, Alex W.
Qian, Xiaofeng
Ardakani, Sina Moeini
Gong, Yongji
Wang, Xingli
Weisse, Jeffery M.
Lee, Chi Hwan
Zhao, Jiheng
Ajayan, Pulickel M.
Li, Ju
Manoharan, Hari C.
Zheng, Xiaolin
author_facet Li, Hong
Contryman, Alex W.
Qian, Xiaofeng
Ardakani, Sina Moeini
Gong, Yongji
Wang, Xingli
Weisse, Jeffery M.
Lee, Chi Hwan
Zhao, Jiheng
Ajayan, Pulickel M.
Li, Ju
Manoharan, Hari C.
Zheng, Xiaolin
author_sort Li, Hong
collection PubMed
description The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics.
format Online
Article
Text
id pubmed-4557352
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45573522015-09-11 Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide Li, Hong Contryman, Alex W. Qian, Xiaofeng Ardakani, Sina Moeini Gong, Yongji Wang, Xingli Weisse, Jeffery M. Lee, Chi Hwan Zhao, Jiheng Ajayan, Pulickel M. Li, Ju Manoharan, Hari C. Zheng, Xiaolin Nat Commun Article The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics. Nature Pub. Group 2015-06-19 /pmc/articles/PMC4557352/ /pubmed/26088550 http://dx.doi.org/10.1038/ncomms8381 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Li, Hong
Contryman, Alex W.
Qian, Xiaofeng
Ardakani, Sina Moeini
Gong, Yongji
Wang, Xingli
Weisse, Jeffery M.
Lee, Chi Hwan
Zhao, Jiheng
Ajayan, Pulickel M.
Li, Ju
Manoharan, Hari C.
Zheng, Xiaolin
Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title_full Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title_fullStr Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title_full_unstemmed Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title_short Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
title_sort optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557352/
https://www.ncbi.nlm.nih.gov/pubmed/26088550
http://dx.doi.org/10.1038/ncomms8381
work_keys_str_mv AT lihong optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT contrymanalexw optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT qianxiaofeng optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT ardakanisinamoeini optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT gongyongji optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT wangxingli optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT weissejefferym optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT leechihwan optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT zhaojiheng optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT ajayanpulickelm optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT liju optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT manoharanharic optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide
AT zhengxiaolin optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide