Cargando…
Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial stra...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557352/ https://www.ncbi.nlm.nih.gov/pubmed/26088550 http://dx.doi.org/10.1038/ncomms8381 |
_version_ | 1782388492810059776 |
---|---|
author | Li, Hong Contryman, Alex W. Qian, Xiaofeng Ardakani, Sina Moeini Gong, Yongji Wang, Xingli Weisse, Jeffery M. Lee, Chi Hwan Zhao, Jiheng Ajayan, Pulickel M. Li, Ju Manoharan, Hari C. Zheng, Xiaolin |
author_facet | Li, Hong Contryman, Alex W. Qian, Xiaofeng Ardakani, Sina Moeini Gong, Yongji Wang, Xingli Weisse, Jeffery M. Lee, Chi Hwan Zhao, Jiheng Ajayan, Pulickel M. Li, Ju Manoharan, Hari C. Zheng, Xiaolin |
author_sort | Li, Hong |
collection | PubMed |
description | The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics. |
format | Online Article Text |
id | pubmed-4557352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45573522015-09-11 Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide Li, Hong Contryman, Alex W. Qian, Xiaofeng Ardakani, Sina Moeini Gong, Yongji Wang, Xingli Weisse, Jeffery M. Lee, Chi Hwan Zhao, Jiheng Ajayan, Pulickel M. Li, Ju Manoharan, Hari C. Zheng, Xiaolin Nat Commun Article The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics. Nature Pub. Group 2015-06-19 /pmc/articles/PMC4557352/ /pubmed/26088550 http://dx.doi.org/10.1038/ncomms8381 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Li, Hong Contryman, Alex W. Qian, Xiaofeng Ardakani, Sina Moeini Gong, Yongji Wang, Xingli Weisse, Jeffery M. Lee, Chi Hwan Zhao, Jiheng Ajayan, Pulickel M. Li, Ju Manoharan, Hari C. Zheng, Xiaolin Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title | Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title_full | Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title_fullStr | Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title_full_unstemmed | Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title_short | Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
title_sort | optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557352/ https://www.ncbi.nlm.nih.gov/pubmed/26088550 http://dx.doi.org/10.1038/ncomms8381 |
work_keys_str_mv | AT lihong optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT contrymanalexw optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT qianxiaofeng optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT ardakanisinamoeini optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT gongyongji optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT wangxingli optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT weissejefferym optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT leechihwan optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT zhaojiheng optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT ajayanpulickelm optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT liju optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT manoharanharic optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide AT zhengxiaolin optoelectroniccrystalofartificialatomsinstraintexturedmolybdenumdisulphide |