Cargando…

Emergent vortices in populations of colloidal rollers

Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Bricard, Antoine, Caussin, Jean-Baptiste, Das, Debasish, Savoie, Charles, Chikkadi, Vijayakumar, Shitara, Kyohei, Chepizhko, Oleksandr, Peruani, Fernando, Saintillan, David, Bartolo, Denis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557359/
https://www.ncbi.nlm.nih.gov/pubmed/26088835
http://dx.doi.org/10.1038/ncomms8470
Descripción
Sumario:Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries.