Cargando…

Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2′-deoxycytidine in human leukemic KG1 cells

5-azacytidine and 5-aza-2′-deoxycytidine are clinically used to treat patients with blood neoplasia. Their antileukemic property is mediated by the trapping and the subsequent degradation of a family of proteins, the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) leading to DNA demethylation, tu...

Descripción completa

Detalles Bibliográficos
Autores principales: Vispé, Stéphane, Deroide, Arthur, Davoine, Emeline, Desjobert, Cécile, Lestienne, Fabrice, Fournier, Lucie, Novosad, Natacha, Bréand, Sophie, Besse, Jérôme, Busato, Florence, Tost, Jörg, De Vries, Luc, Cussac, Didier, Riond, Joëlle, Arimondo, Paola B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558150/
https://www.ncbi.nlm.nih.gov/pubmed/25948775
Descripción
Sumario:5-azacytidine and 5-aza-2′-deoxycytidine are clinically used to treat patients with blood neoplasia. Their antileukemic property is mediated by the trapping and the subsequent degradation of a family of proteins, the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) leading to DNA demethylation, tumor suppressor gene re-expression and DNA damage. Here we studied the respective role of each DNMT in the human leukemia KG1 cell line using a RNA interference approach. In addition we addressed the role of DNA damage formation in DNA demethylation by 5-aza-2′-deoxycytidine. Our data show that DNMT1 is the main DNMT involved in DNA methylation maintenance in KG1 cells and in mediating DNA damage formation upon exposure to 5-aza-2′-deoxycytidine. Moreover, KG1 cells express the DNMT1 protein at a level above the one required to ensure DNA methylation maintenance, and we identified a threshold for DNMT1 depletion that needs to be exceeded to achieve DNA demethylation. Most interestingly, by combining DNMT1 siRNA and treatment with low dose of 5-aza-2′-deoxycytidine, it is possible to uncouple DNA damage formation from DNA demethylation. This work strongly suggests that a direct pharmacological inhibition of DNMT1, unlike the use of 5-aza-2′-deoxycytidine, should lead to tumor suppressor gene hypomethylation and re-expression without inducing major DNA damage in leukemia.