Cargando…
A Novel Method for the Discrimination of Semen Arecae and Its Processed Products by Using Computer Vision, Electronic Nose, and Electronic Tongue
Areca nut, commonly known locally as Semen Arecae (SA) in China, has been used as an important Chinese herbal medicine for thousands of years. The raw SA (RAW) is commonly processed by stir-baking to yellow (SBY), stir-baking to dark brown (SBD), and stir-baking to carbon dark (SBC) for different cl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558443/ https://www.ncbi.nlm.nih.gov/pubmed/26366185 http://dx.doi.org/10.1155/2015/753942 |
Sumario: | Areca nut, commonly known locally as Semen Arecae (SA) in China, has been used as an important Chinese herbal medicine for thousands of years. The raw SA (RAW) is commonly processed by stir-baking to yellow (SBY), stir-baking to dark brown (SBD), and stir-baking to carbon dark (SBC) for different clinical uses. In our present investigation, intelligent sensory technologies consisting of computer vision (CV), electronic nose (E-nose), and electronic tongue (E-tongue) were employed in order to develop a novel and accurate method for discrimination of SA and its processed products. Firstly, the color parameters and electronic sensory responses of E-nose and E-tongue of the samples were determined, respectively. Then, indicative components including 5-hydroxymethyl furfural (5-HMF) and arecoline (ARE) were determined by HPLC. Finally, principal component analysis (PCA) and discriminant factor analysis (DFA) were performed. The results demonstrated that these three instruments can effectively discriminate SA and its processed products. 5-HMF and ARE can reflect the stir-baking degree of SA. Interestingly, the two components showed close correlations to the color parameters and sensory responses of E-nose and E-tongue. In conclusion, this novel method based on CV, E-nose, and E-tongue can be successfully used to discriminate SA and its processed products. |
---|