Cargando…
Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, b...
Autores principales: | Drakesmith, M., Caeyenberghs, K., Dutt, A., Lewis, G., David, A.S., Jones, D.K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558463/ https://www.ncbi.nlm.nih.gov/pubmed/25982515 http://dx.doi.org/10.1016/j.neuroimage.2015.05.011 |
Ejemplares similares
-
Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study
por: Fonville, Leon, et al.
Publicado: (2015) -
Estimating Bar Graph Averages: Overcoming Within-the-Bar
Bias
por: Kang, Hyunmin, et al.
Publicado: (2021) -
Schizophrenia‐like topological changes in the structural connectome of individuals with subclinical psychotic experiences
por: Drakesmith, Mark, et al.
Publicado: (2015) -
Graph Theoretical Analysis of Structural Neuroimaging in Temporal Lobe Epilepsy with and without Psychosis
por: Sone, Daichi, et al.
Publicado: (2016) -
A new graph-theoretic approach to determine the similarity of genome sequences based on nucleotide triplets
por: Das, Subhram, et al.
Publicado: (2020)