Cargando…

Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens

BACKGROUND: We used a simple experimental design to test for the effects of microcosm scaling on the growth and survival of the mosquito, Culex pipiens. Microcosm and mesocosm studies are commonly used in ecology, and there is often an assumption that scaling doesn't affect experimental outcome...

Descripción completa

Detalles Bibliográficos
Autores principales: Wynn, Gregory, Paradise, Christopher J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC45585/
https://www.ncbi.nlm.nih.gov/pubmed/11527507
http://dx.doi.org/10.1186/1472-6785-1-3
_version_ 1782120024542019584
author Wynn, Gregory
Paradise, Christopher J
author_facet Wynn, Gregory
Paradise, Christopher J
author_sort Wynn, Gregory
collection PubMed
description BACKGROUND: We used a simple experimental design to test for the effects of microcosm scaling on the growth and survival of the mosquito, Culex pipiens. Microcosm and mesocosm studies are commonly used in ecology, and there is often an assumption that scaling doesn't affect experimental outcomes. The assumption is implicit in the design; choice of mesocosms may be arbitrary or based on convenience or cost. We tested the hypothesis that scale would influence larvae due to depth and surface area effects. Larvae were predicted to perform poorly in microcosms that were both deep and had small openings, due to buildup of waste products, less exchange with the environment, and increased competition. To determine if the choice of scale affected responses to other factors, we independently varied leaf litter quantity, whose effects on mosquitoes are well known. RESULTS: We found adverse effects of both a lower wall surface area and lower horizontal surface area, but microcosm scale interacted with resources such that C. pipiens is affected by habitat size only when food resources are scarce. At low resource levels mosquitoes were fewer, but larger, in microcosms with smaller horizontal surface area and greater depth than in microcosms with greater horizontal surface area and shallower depth. Microcosms with more vertical surface area/volume often produced larger mosquitoes; more food may have been available since mosquitoes browse on walls and other substrates for food. CONCLUSIONS: The interaction between habitat size and food abundance is consequential to aquatic animals, and choice of scale in experiments may affect results. Varying surface area and depth causes the scale effect, with small horizontal surface area and large depth decreasing matter exchange with the surrounding environment. In addition, fewer resources leads to less leaf surface area, and the effects of varying surface area will be greater under conditions of limiting resources. This leads to smaller size, which limits fecundity and survival. Choice of container size, either by ovipositing females or researchers, interacts with a major aspect of the ecology of animals; obtaining resources in a resource-limited environment.
format Text
id pubmed-45585
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-455852001-08-30 Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens Wynn, Gregory Paradise, Christopher J BMC Ecol Research Article BACKGROUND: We used a simple experimental design to test for the effects of microcosm scaling on the growth and survival of the mosquito, Culex pipiens. Microcosm and mesocosm studies are commonly used in ecology, and there is often an assumption that scaling doesn't affect experimental outcomes. The assumption is implicit in the design; choice of mesocosms may be arbitrary or based on convenience or cost. We tested the hypothesis that scale would influence larvae due to depth and surface area effects. Larvae were predicted to perform poorly in microcosms that were both deep and had small openings, due to buildup of waste products, less exchange with the environment, and increased competition. To determine if the choice of scale affected responses to other factors, we independently varied leaf litter quantity, whose effects on mosquitoes are well known. RESULTS: We found adverse effects of both a lower wall surface area and lower horizontal surface area, but microcosm scale interacted with resources such that C. pipiens is affected by habitat size only when food resources are scarce. At low resource levels mosquitoes were fewer, but larger, in microcosms with smaller horizontal surface area and greater depth than in microcosms with greater horizontal surface area and shallower depth. Microcosms with more vertical surface area/volume often produced larger mosquitoes; more food may have been available since mosquitoes browse on walls and other substrates for food. CONCLUSIONS: The interaction between habitat size and food abundance is consequential to aquatic animals, and choice of scale in experiments may affect results. Varying surface area and depth causes the scale effect, with small horizontal surface area and large depth decreasing matter exchange with the surrounding environment. In addition, fewer resources leads to less leaf surface area, and the effects of varying surface area will be greater under conditions of limiting resources. This leads to smaller size, which limits fecundity and survival. Choice of container size, either by ovipositing females or researchers, interacts with a major aspect of the ecology of animals; obtaining resources in a resource-limited environment. BioMed Central 2001-08-01 /pmc/articles/PMC45585/ /pubmed/11527507 http://dx.doi.org/10.1186/1472-6785-1-3 Text en Copyright © 2001 Wynn and Paradise; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Wynn, Gregory
Paradise, Christopher J
Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title_full Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title_fullStr Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title_full_unstemmed Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title_short Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens
title_sort effects of microcosm scaling and food resources on growth and survival of larval culex pipiens
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC45585/
https://www.ncbi.nlm.nih.gov/pubmed/11527507
http://dx.doi.org/10.1186/1472-6785-1-3
work_keys_str_mv AT wynngregory effectsofmicrocosmscalingandfoodresourcesongrowthandsurvivaloflarvalculexpipiens
AT paradisechristopherj effectsofmicrocosmscalingandfoodresourcesongrowthandsurvivaloflarvalculexpipiens