Cargando…

Ice-templated Self-assembly of VOPO(4)–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes

A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO(4)) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO(4)–graphene nanocomposite has a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kwang Hoon, Lee, Young-Woo, Lee, Seung Woo, Ha, Jeong Sook, Lee, Sang-Soo, Son, Jeong Gon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558581/
https://www.ncbi.nlm.nih.gov/pubmed/26333591
http://dx.doi.org/10.1038/srep13696
Descripción
Sumario:A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO(4)) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO(4)–graphene nanocomposite has a much higher capacitance of 527.9 F g(−1) at a current density of 0.5 A g(−1), compared with ~247 F g(−1) of simple 3D VOPO(4), with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO(4)–graphene nanosheets. This VOPO(4)–graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO(4)–graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg(−1).