Cargando…

Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study

BACKGROUND: The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynam...

Descripción completa

Detalles Bibliográficos
Autores principales: Chowell, Gerardo, Abdirizak, Fatima, Lee, Sunmi, Lee, Jonggul, Jung, Eunok, Nishiura, Hiroshi, Viboud, Cécile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558759/
https://www.ncbi.nlm.nih.gov/pubmed/26336062
http://dx.doi.org/10.1186/s12916-015-0450-0
_version_ 1782388663178493952
author Chowell, Gerardo
Abdirizak, Fatima
Lee, Sunmi
Lee, Jonggul
Jung, Eunok
Nishiura, Hiroshi
Viboud, Cécile
author_facet Chowell, Gerardo
Abdirizak, Fatima
Lee, Sunmi
Lee, Jonggul
Jung, Eunok
Nishiura, Hiroshi
Viboud, Cécile
author_sort Chowell, Gerardo
collection PubMed
description BACKGROUND: The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. METHODS: To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. RESULTS: A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied highly across individual hospital outbreaks (Kruskal–Wallis test; P < 0.0001), with significantly higher transmission heterogeneity in the distribution of secondary cases for MERS than SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (>100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. CONCLUSIONS: Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-015-0450-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4558759
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45587592015-09-04 Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study Chowell, Gerardo Abdirizak, Fatima Lee, Sunmi Lee, Jonggul Jung, Eunok Nishiura, Hiroshi Viboud, Cécile BMC Med Research Article BACKGROUND: The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. METHODS: To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. RESULTS: A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied highly across individual hospital outbreaks (Kruskal–Wallis test; P < 0.0001), with significantly higher transmission heterogeneity in the distribution of secondary cases for MERS than SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (>100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. CONCLUSIONS: Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-015-0450-0) contains supplementary material, which is available to authorized users. BioMed Central 2015-09-03 /pmc/articles/PMC4558759/ /pubmed/26336062 http://dx.doi.org/10.1186/s12916-015-0450-0 Text en © Chowell et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Chowell, Gerardo
Abdirizak, Fatima
Lee, Sunmi
Lee, Jonggul
Jung, Eunok
Nishiura, Hiroshi
Viboud, Cécile
Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title_full Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title_fullStr Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title_full_unstemmed Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title_short Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study
title_sort transmission characteristics of mers and sars in the healthcare setting: a comparative study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558759/
https://www.ncbi.nlm.nih.gov/pubmed/26336062
http://dx.doi.org/10.1186/s12916-015-0450-0
work_keys_str_mv AT chowellgerardo transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT abdirizakfatima transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT leesunmi transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT leejonggul transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT jungeunok transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT nishiurahiroshi transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy
AT viboudcecile transmissioncharacteristicsofmersandsarsinthehealthcaresettingacomparativestudy