Cargando…

Successful ECMO-cardiopulmonary resuscitation with the associated post-arrest cardiac dysfunction as demonstrated by MRI

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (ECMO-CPR) is a life-saving rescue for selected patients when standard cardiopulmonary resuscitation fails. The use is increasing although the treatment modality is not fully established. Resuscitated patients typically develop a detrimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergan, Harald Arne, Halvorsen, Per Steinar, Skulstad, Helge, Edvardsen, Thor, Fosse, Erik, Bugge, Jan Frederik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558998/
https://www.ncbi.nlm.nih.gov/pubmed/26335546
http://dx.doi.org/10.1186/s40635-015-0061-2
Descripción
Sumario:BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (ECMO-CPR) is a life-saving rescue for selected patients when standard cardiopulmonary resuscitation fails. The use is increasing although the treatment modality is not fully established. Resuscitated patients typically develop a detrimental early post-arrest cardiac dysfunction that also deserves main emphasis. The present study investigates an ECMO-CPR strategy in pigs and assesses early post-arrest left ventricular function in detail. We hypothesised that a significant dysfunction could be demonstrated with this model using magnetic resonance imaging (MRI), not previously used early post-arrest. METHODS: In eight anaesthetised pigs, a 15-min ventricular fibrillation was resuscitated by an ECMO-CPR strategy of 150-min veno-arterial ECMO aiming at high blood flow rate and pharmacologically sustained aortic blood pressure and pulse pressure of 50 and 15 mmHg, respectively. Pre-arrest cardiac MRI and haemodynamic measurements of left ventricular function were compared to measurements performed 300-min post-arrest. RESULTS: All animals were successfully resuscitated, weaned from the ECMO circuit, and haemodynamically stabilised post-arrest. Cardiac output was maintained by an increased heart rate post-arrest, but left ventricular ejection fraction and stroke volume were decreased by approximately 50 %. Systolic circumferential strain and mitral annular plane systolic excursion as well as the left ventricular wall thickening were reduced by approximately 50–70 % post-arrest. The diastolic function variables measured were unchanged. CONCLUSIONS: The present animal study demonstrates a successful ECMO-CPR strategy resuscitating long-lasting cardiac arrest with adequate post-arrest haemodynamic stability. The associated severe systolic left ventricular dysfunction could be charted in detail by MRI, a valuable tool for future cardiac outcome assessments in resuscitation research. TRIAL REGISTRATION: Institutional protocol number: FOTS 4611/13. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40635-015-0061-2) contains supplementary material, which is available to authorized users.