Cargando…
Successful ECMO-cardiopulmonary resuscitation with the associated post-arrest cardiac dysfunction as demonstrated by MRI
BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (ECMO-CPR) is a life-saving rescue for selected patients when standard cardiopulmonary resuscitation fails. The use is increasing although the treatment modality is not fully established. Resuscitated patients typically develop a detrimen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558998/ https://www.ncbi.nlm.nih.gov/pubmed/26335546 http://dx.doi.org/10.1186/s40635-015-0061-2 |
Sumario: | BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (ECMO-CPR) is a life-saving rescue for selected patients when standard cardiopulmonary resuscitation fails. The use is increasing although the treatment modality is not fully established. Resuscitated patients typically develop a detrimental early post-arrest cardiac dysfunction that also deserves main emphasis. The present study investigates an ECMO-CPR strategy in pigs and assesses early post-arrest left ventricular function in detail. We hypothesised that a significant dysfunction could be demonstrated with this model using magnetic resonance imaging (MRI), not previously used early post-arrest. METHODS: In eight anaesthetised pigs, a 15-min ventricular fibrillation was resuscitated by an ECMO-CPR strategy of 150-min veno-arterial ECMO aiming at high blood flow rate and pharmacologically sustained aortic blood pressure and pulse pressure of 50 and 15 mmHg, respectively. Pre-arrest cardiac MRI and haemodynamic measurements of left ventricular function were compared to measurements performed 300-min post-arrest. RESULTS: All animals were successfully resuscitated, weaned from the ECMO circuit, and haemodynamically stabilised post-arrest. Cardiac output was maintained by an increased heart rate post-arrest, but left ventricular ejection fraction and stroke volume were decreased by approximately 50 %. Systolic circumferential strain and mitral annular plane systolic excursion as well as the left ventricular wall thickening were reduced by approximately 50–70 % post-arrest. The diastolic function variables measured were unchanged. CONCLUSIONS: The present animal study demonstrates a successful ECMO-CPR strategy resuscitating long-lasting cardiac arrest with adequate post-arrest haemodynamic stability. The associated severe systolic left ventricular dysfunction could be charted in detail by MRI, a valuable tool for future cardiac outcome assessments in resuscitation research. TRIAL REGISTRATION: Institutional protocol number: FOTS 4611/13. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40635-015-0061-2) contains supplementary material, which is available to authorized users. |
---|