Cargando…

Hybridization in closely related Rhododendron species: half of all species-differentiating markers experience serious transmission ratio distortion

An increasing number of studies of hybridization in recent years have revealed that complete reproductive isolation between species is frequently not finalized in more or less closely related organisms. Most of these species do, however, seem to retain their phenotypical characteristics despite the...

Descripción completa

Detalles Bibliográficos
Autores principales: Marczewski, Tobias, Chamberlain, David F, Milne, Richard I
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559045/
https://www.ncbi.nlm.nih.gov/pubmed/26357534
http://dx.doi.org/10.1002/ece3.1570
Descripción
Sumario:An increasing number of studies of hybridization in recent years have revealed that complete reproductive isolation between species is frequently not finalized in more or less closely related organisms. Most of these species do, however, seem to retain their phenotypical characteristics despite the implication of gene flow, highlighting the remaining gap in our knowledge of how much of an organism’s genome is permeable to gene flow, and which factors promote or prevent hybridization. We used AFLP markers to investigate the genetic composition of three populations involving two interfertile Rhododendron species: two sympatric populations, of which only one contained hybrids, and a further hybrid-dominated population. No fixed differences between the species were found, and only 5.8% of the markers showed some degree of species differentiation. Additionally, 45.5% of highly species-differentiating markers experienced significant transmission distortion in the hybrids, which was most pronounced in F1 hybrids, suggesting that factors conveying incompatibilities are still segregating within the species. Furthermore, the two hybrid populations showed stark contrasting composition of hybrids; one was an asymmetrically backcrossing hybrid swarm, while in the other, backcrosses were absent, thus preventing gene flow.