Cargando…
Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media
BACKGROUND: In geochemically perturbed systems where porewater and mineral assemblages are unequilibrated the processes of mineral precipitation and dissolution may change important transport properties such as porosity and pore diffusion coefficients. These reactions might alter the sealing capabil...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559087/ https://www.ncbi.nlm.nih.gov/pubmed/26339199 http://dx.doi.org/10.1186/s12932-015-0027-z |
_version_ | 1782388719472345088 |
---|---|
author | Chagneau, Aurélie Claret, Francis Enzmann, Frieder Kersten, Michael Heck, Stephanie Madé, Benoît Schäfer, Thorsten |
author_facet | Chagneau, Aurélie Claret, Francis Enzmann, Frieder Kersten, Michael Heck, Stephanie Madé, Benoît Schäfer, Thorsten |
author_sort | Chagneau, Aurélie |
collection | PubMed |
description | BACKGROUND: In geochemically perturbed systems where porewater and mineral assemblages are unequilibrated the processes of mineral precipitation and dissolution may change important transport properties such as porosity and pore diffusion coefficients. These reactions might alter the sealing capabilities of the rock by complete pore-scale precipitation (cementation) of the system or by opening new migration pathways through mineral dissolution. In actual 1D continuum reactive transport codes the coupling of transport and porosity is generally accomplished through the empirical Archie’s law. There is very little reported data on systems with changing porosity under well controlled conditions to constrain model input parameters. In this study celestite (SrSO(4)) was precipitated in the pore space of a compacted sand column under diffusion controlled conditions and the effect on the fluid migration properties was investigated by means of three complementary experimental approaches: (1) tritiated water (HTO) tracer through diffusion, (2) computed micro-tomography (µ-CT) imaging and (3) post-mortem analysis of the precipitate (selective dissolution, SEM/EDX). RESULTS: The through-diffusion experiments reached steady state after 15 days, at which point celestite precipitation ceased and the non-reactive HTO flux became constant. The pore space in the precipitation zone remained fully connected using a 6 µm µ-CT spatial resolution with 25 % porosity reduction in the approx. 0.35 mm thick dense precipitation zone. The porosity and transport parameters prior to pore-scale precipitation were in good agreement with a porosity of 0.42 ± 0.09 (HTO) and 0.40 ± 0.03 (µ-CT), as was the mass of SrSO(4) precipitate estimated by µ-CT at 25 ± 5 mg and selective dissolution 21.7 ± 0.4 mg, respectively. However, using this data as input parameters the 1D single continuum reactive transport model was not able to accurately reproduce both the celestite precipitation front and the remaining connected porosity. The model assumed there was a direct linkage of porosity to the effective diffusivity using only one cementation value over the whole porosity range of the system investigated. CONCLUSIONS: The 1D single continuous model either underestimated the remaining connected porosity in the precipitation zone, or overestimated the amount of precipitate. These findings support the need to implement a modified, extended Archie’s law to the reactive transport model and show that pore-scale precipitation transforms a system (following Archie’s simple power law with only micropores present) towards a system similar to clays with micro- and nanoporosity. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12932-015-0027-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4559087 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-45590872015-09-04 Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media Chagneau, Aurélie Claret, Francis Enzmann, Frieder Kersten, Michael Heck, Stephanie Madé, Benoît Schäfer, Thorsten Geochem Trans Research Article BACKGROUND: In geochemically perturbed systems where porewater and mineral assemblages are unequilibrated the processes of mineral precipitation and dissolution may change important transport properties such as porosity and pore diffusion coefficients. These reactions might alter the sealing capabilities of the rock by complete pore-scale precipitation (cementation) of the system or by opening new migration pathways through mineral dissolution. In actual 1D continuum reactive transport codes the coupling of transport and porosity is generally accomplished through the empirical Archie’s law. There is very little reported data on systems with changing porosity under well controlled conditions to constrain model input parameters. In this study celestite (SrSO(4)) was precipitated in the pore space of a compacted sand column under diffusion controlled conditions and the effect on the fluid migration properties was investigated by means of three complementary experimental approaches: (1) tritiated water (HTO) tracer through diffusion, (2) computed micro-tomography (µ-CT) imaging and (3) post-mortem analysis of the precipitate (selective dissolution, SEM/EDX). RESULTS: The through-diffusion experiments reached steady state after 15 days, at which point celestite precipitation ceased and the non-reactive HTO flux became constant. The pore space in the precipitation zone remained fully connected using a 6 µm µ-CT spatial resolution with 25 % porosity reduction in the approx. 0.35 mm thick dense precipitation zone. The porosity and transport parameters prior to pore-scale precipitation were in good agreement with a porosity of 0.42 ± 0.09 (HTO) and 0.40 ± 0.03 (µ-CT), as was the mass of SrSO(4) precipitate estimated by µ-CT at 25 ± 5 mg and selective dissolution 21.7 ± 0.4 mg, respectively. However, using this data as input parameters the 1D single continuum reactive transport model was not able to accurately reproduce both the celestite precipitation front and the remaining connected porosity. The model assumed there was a direct linkage of porosity to the effective diffusivity using only one cementation value over the whole porosity range of the system investigated. CONCLUSIONS: The 1D single continuous model either underestimated the remaining connected porosity in the precipitation zone, or overestimated the amount of precipitate. These findings support the need to implement a modified, extended Archie’s law to the reactive transport model and show that pore-scale precipitation transforms a system (following Archie’s simple power law with only micropores present) towards a system similar to clays with micro- and nanoporosity. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12932-015-0027-z) contains supplementary material, which is available to authorized users. Springer International Publishing 2015-09-03 /pmc/articles/PMC4559087/ /pubmed/26339199 http://dx.doi.org/10.1186/s12932-015-0027-z Text en © Chagneau et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Chagneau, Aurélie Claret, Francis Enzmann, Frieder Kersten, Michael Heck, Stephanie Madé, Benoît Schäfer, Thorsten Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title | Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title_full | Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title_fullStr | Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title_full_unstemmed | Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title_short | Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
title_sort | mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusion-controlled porous media |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559087/ https://www.ncbi.nlm.nih.gov/pubmed/26339199 http://dx.doi.org/10.1186/s12932-015-0027-z |
work_keys_str_mv | AT chagneauaurelie mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT claretfrancis mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT enzmannfrieder mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT kerstenmichael mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT heckstephanie mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT madebenoit mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia AT schaferthorsten mineralprecipitationinducedporosityreductionanditseffectontransportparametersindiffusioncontrolledporousmedia |