Cargando…
Supervised learning methods in modeling of CD4+ T cell heterogeneity
BACKGROUND: Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells,...
Autores principales: | Lu, Pinyi, Abedi, Vida, Mei, Yongguo, Hontecillas, Raquel, Hoops, Stefan, Carbo, Adria, Bassaganya-Riera, Josep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559362/ https://www.ncbi.nlm.nih.gov/pubmed/26339293 http://dx.doi.org/10.1186/s13040-015-0060-6 |
Ejemplares similares
-
Computational modeling of heterogeneity and function of CD4+ T cells
por: Carbo, Adria, et al.
Publicado: (2014) -
Multiscale modeling of mucosal immune responses
por: Mei, Yongguo, et al.
Publicado: (2015) -
Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection
por: Alam, Maksudul, et al.
Publicado: (2015) -
Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype Plasticity
por: Carbo, Adria, et al.
Publicado: (2013) -
Modeling-Enabled Systems Nutritional Immunology
por: Verma, Meghna, et al.
Publicado: (2016)