Cargando…
Competition for resources: complicated dynamics in the simple Tilman model
Graphical analysis and computer simulations have become the preferred tools to present Tilman’s model of resource competition to new generations of ecologists. To really understand the full dynamic behaviour, a more rigorous mathematical analysis is required. We show that just a basic stability anal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559563/ https://www.ncbi.nlm.nih.gov/pubmed/26361575 http://dx.doi.org/10.1186/s40064-015-1246-6 |
Sumario: | Graphical analysis and computer simulations have become the preferred tools to present Tilman’s model of resource competition to new generations of ecologists. To really understand the full dynamic behaviour, a more rigorous mathematical analysis is required. We show that just a basic stability analysis is insufficient to describe the relevant dynamics of this deceptively simple model. To investigate realistic invasion and succession processes, not only the stable state is relevant, but also the time scales at which the system moves away from the unstable situation. We argue that the relative stability of saddle points is more important for the actual observed transient dynamics in realistic systems than the predicted asymptotic behaviour towards the stable equilibria. For the mathematical analysis this implies that not only the signs, but also the magnitudes of the eigenvalues of the Jacobi matrix at the stationary points, the rates at which the system evolves, must be considered. We present the underlying mathematics of the Tilman model in a way that should be accessible to any ecologist with a basic mathematical background. |
---|