Cargando…

Proteomic Changes Associated with Successive Reproductive Periods in Male Polychaetous Neanthes arenaceodentata

The polychaetous annelid Neanthes acuminata complex has a widespread distribution, with the California population referred to as N. arenaceodentata. The reproductive pattern in this complex is unique, in that the female reproduces once and then dies, whereas the male can reproduce up to nine times....

Descripción completa

Detalles Bibliográficos
Autores principales: Chandramouli, Kondethimmanahalli H., Reish, Donald, Zhang, Huoming, Qian, Pei-Yuan, Ravasi, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559745/
https://www.ncbi.nlm.nih.gov/pubmed/26337980
http://dx.doi.org/10.1038/srep13561
Descripción
Sumario:The polychaetous annelid Neanthes acuminata complex has a widespread distribution, with the California population referred to as N. arenaceodentata. The reproductive pattern in this complex is unique, in that the female reproduces once and then dies, whereas the male can reproduce up to nine times. The male incubates the embryos until the larvae leave the male’s tube 21–28 days later and commences feeding. Reproductive success and protein expression patterns were measured over the nine reproductive periods. The percent success of the male in producing juveniles increased during the first three reproductive periods and then decreased, but the number of juveniles produced was similar through all nine periods. iTRAQ based quantitative proteomics were used to analyze the dynamics of protein expression patterns. The expression patterns of several proteins were found to be altered. The abundant expression of muscular and contractile proteins may have affected body weight and reproductive success. Sperm have never been observed; fertilization occurs within the parent’s tube. Proteins associated with sperm maturation and fertilization were identified, including ATPase, clathrin, peroxiredoxins and enolase, which may provide clues to the molecular mechanisms enabling males to reproduce multiple times.