Cargando…
Dysregulation of the vascular endothelial growth factor and semaphorin ligand-receptor families in prostate cancer metastasis
BACKGROUND: The vascular endothelial growth factor (VEGF) family is central to cancer angiogenesis. However, targeting VEGF as an anti-cancer therapeutic approach has shown success for some tumor types but not others. Here we examine the expression of the expanded VEGF family in prostate cancer, inc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559909/ https://www.ncbi.nlm.nih.gov/pubmed/26341082 http://dx.doi.org/10.1186/s12918-015-0201-z |
Sumario: | BACKGROUND: The vascular endothelial growth factor (VEGF) family is central to cancer angiogenesis. However, targeting VEGF as an anti-cancer therapeutic approach has shown success for some tumor types but not others. Here we examine the expression of the expanded VEGF family in prostate cancer, including the Semaphorin (Sema) family members that compete with VEGFs for Neuropilin binding and can themselves have pro- or anti-angiogenic activity. RESULTS: First, we used multivariate statistical methods, including partial least squares and clustering, to examine VEGF/Sema gene expression variability in previously published prostate cancer microarray datasets. We show that unlike some cancers, such as kidney cancer, primary prostate cancer is characterized by both a down-regulation of the pro-angiogenic members of the VEGF family and a down-regulation of anti-angiogenic members of the Sema family. We found pro-lymphangiogenic signatures, including the genes encoding VEGFC and VEGFD, associated with primary tumors that ultimately became aggressive. In contrast to primary prostate tumors, prostate cancer metastases showed increased expression of key pro-angiogenic VEGF family members and further repression of anti-angiogenic class III Sema family members. Given the lack of success of VEGF-targeting molecules so far in prostate cancer, this suggests that the reduction in anti-angiogenic Sema signaling may potentiate VEGF signaling and even promote resistance to VEGF-targeting therapies. Inhibition of the VEGF ‘accelerator’ may need to be accompanied by promotion of the Sema ‘brake’ to block cancer angiogenesis. To leverage our mechanistic understanding, and to link multigene expression changes to outcomes, we performed individualized computational simulations of competitive VEGF and Sema receptor binding across many tumor samples. The simulations suggest that loss of Sema expression promotes angiogenesis by lowering plexin signaling, not by potentiating VEGF signaling via relaxation of competition. CONCLUSIONS: The combined analysis of bioinformatic data with computational modeling of ligand-receptor interactions demonstrated that enhancement of angiogenesis in prostate cancer metastases may occur through two different routes: elevation of VEGFA and reduction of class 3 Semaphorins. Therapeutic inhibition of angiogenesis in metastatic prostate cancer should account for both of these routes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-015-0201-z) contains supplementary material, which is available to authorized users. |
---|